ChatHuggingFace
This will help you getting started with langchain_huggingface
chat models. For detailed documentation of all ChatHuggingFace
features and configurations head to the API reference. For a list of models supported by Hugging Face check out this page.
Overview
Integration details
Integration details
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatHuggingFace | langchain-huggingface | ✅ | beta | ❌ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
Setup
To access Hugging Face models you'll need to create a Hugging Face account, get an API key, and install the langchain-huggingface
integration package.
Credentials
Generate a Hugging Face Access Token and store it as an environment variable: HUGGINGFACEHUB_API_TOKEN
.
import getpass
import os
if not os.getenv("HUGGINGFACEHUB_API_TOKEN"):
os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass("Enter your token: ")
Installation
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatHuggingFace | langchain_huggingface | ✅ | ❌ | ❌ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
Setup
To access langchain_huggingface
models you'll need to create a/an Hugging Face
account, get an API key, and install the langchain_huggingface
integration package.
Credentials
You'll need to have a Hugging Face Access Token saved as an environment variable: HUGGINGFACEHUB_API_TOKEN
.
import getpass
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass(
"Enter your Hugging Face API key: "
)
%pip install --upgrade --quiet langchain-huggingface text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2 bitsandbytes accelerate
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m24.0[0m[39;49m -> [0m[32;49m24.1.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
Note: you may need to restart the kernel to use updated packages.
Instantiation
You can instantiate a ChatHuggingFace
model in two different ways, either from a HuggingFaceEndpoint
or from a HuggingFacePipeline
.
HuggingFaceEndpoint
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
)
chat_model = ChatHuggingFace(llm=llm)
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /Users/isaachershenson/.cache/huggingface/token
Login successful
HuggingFacePipeline
from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline
llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
),
)
chat_model = ChatHuggingFace(llm=llm)
config.json: 0%| | 0.00/638 [00:00<?, ?B/s]
model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]
Downloading shards: 0%| | 0/8 [00:00<?, ?it/s]
model-00001-of-00008.safetensors: 0%| | 0.00/1.89G [00:00<?, ?B/s]
model-00002-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00003-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00004-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00005-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00006-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00007-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00008-of-00008.safetensors: 0%| | 0.00/816M [00:00<?, ?B/s]
Loading checkpoint shards: 0%| | 0/8 [00:00<?, ?it/s]
generation_config.json: 0%| | 0.00/111 [00:00<?, ?B/s]
Instatiating with Quantization
To run a quantized version of your model, you can specify a bitsandbytes
quantization config as follows:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True,
)
and pass it to the HuggingFacePipeline
as a part of its model_kwargs
:
llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
return_full_text=False,
),
model_kwargs={"quantization_config": quantization_config},
)
chat_model = ChatHuggingFace(llm=llm)
Invocation
from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
messages = [
SystemMessage(content="You're a helpful assistant"),
HumanMessage(
content="What happens when an unstoppable force meets an immovable object?"
),
]
ai_msg = chat_model.invoke(messages)
print(ai_msg.content)
According to the popular phrase and hypothetical scenario, when an unstoppable force meets an immovable object, a paradoxical situation arises as both forces are seemingly contradictory. On one hand, an unstoppable force is an entity that cannot be stopped or prevented from moving forward, while on the other hand, an immovable object is something that cannot be moved or displaced from its position.
In this scenario, it is un
API reference
For detailed documentation of all ChatHuggingFace
features and configurations head to the API reference: https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html
API reference
For detailed documentation of all ChatHuggingFace features and configurations head to the API reference: https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html
Related
- Chat model conceptual guide
- Chat model how-to guides