Skip to main content

ChatOCIModelDeployment

This will help you getting started with OCIModelDeployment chat models. For detailed documentation of all ChatOCIModelDeployment features and configurations head to the API reference.

OCI Data Science is a fully managed and serverless platform for data science teams to build, train, and manage machine learning models in the Oracle Cloud Infrastructure. You can use AI Quick Actions to easily deploy LLMs on OCI Data Science Model Deployment Service. You may choose to deploy the model with popular inference frameworks such as vLLM or TGI. By default, the model deployment endpoint mimics the OpenAI API protocol.

For the latest updates, examples and experimental features, please see ADS LangChain Integration.

Overview

Integration details

ClassPackageLocalSerializableJS supportPackage downloadsPackage latest
ChatOCIModelDeploymentlangchain-communitybetaPyPI - DownloadsPyPI - Version

Model features

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs
dependsdependsdependsdependsdependsdepends

Some model features, including tool calling, structured output, JSON mode and multi-modal inputs, are depending on deployed model.

Setup

To use ChatOCIModelDeployment you'll need to deploy a chat model with chat completion endpoint and install the langchain-community, langchain-openai and oracle-ads integration packages.

You can easily deploy foundation models using the AI Quick Actions on OCI Data Science Model deployment. For additional deployment examples, please visit the Oracle GitHub samples repository.

Policies

Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint.

Credentials

You can set authentication through Oracle ADS. When you are working in OCI Data Science Notebook Session, you can leverage resource principal to access other OCI resources.

import ads

# Set authentication through ads
# Use resource principal are operating within a
# OCI service that has resource principal based
# authentication configured
ads.set_auth("resource_principal")

Alternatively, you can configure the credentials using the following environment variables. For example, to use API key with specific profile:

import os

# Set authentication through environment variables
# Use API Key setup when you are working from a local
# workstation or on platform which does not support
# resource principals.
os.environ["OCI_IAM_TYPE"] = "api_key"
os.environ["OCI_CONFIG_PROFILE"] = "default"
os.environ["OCI_CONFIG_LOCATION"] = "~/.oci"

Check out Oracle ADS docs to see more options.

Installation

The LangChain OCIModelDeployment integration lives in the langchain-community package. The following command will install langchain-community and the required dependencies.

%pip install -qU langchain-community langchain-openai oracle-ads

Instantiation

You may instantiate the model with the generic ChatOCIModelDeployment or framework specific class like ChatOCIModelDeploymentVLLM.

  • Using ChatOCIModelDeployment when you need a generic entry point for deploying models. You can pass model parameters through model_kwargs during the instantiation of this class. This allows for flexibility and ease of configuration without needing to rely on framework-specific details.
from langchain_community.chat_models import ChatOCIModelDeployment

# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri with your own
# Using generic class as entry point, you will be able
# to pass model parameters through model_kwargs during
# instantiation.
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict",
streaming=True,
max_retries=1,
model_kwargs={
"temperature": 0.2,
"max_tokens": 512,
}, # other model params...
)
  • Using framework specific class like ChatOCIModelDeploymentVLLM: This is suitable when you are working with a specific framework (e.g. vLLM) and need to pass model parameters directly through the constructor, streamlining the setup process.
from langchain_community.chat_models import ChatOCIModelDeploymentVLLM

# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri with your own
# Using framework specific class as entry point, you will
# be able to pass model parameters in constructor.
chat = ChatOCIModelDeploymentVLLM(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict",
)

Invocation

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]

ai_msg = chat.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer.", response_metadata={'token_usage': {'prompt_tokens': 44, 'total_tokens': 52, 'completion_tokens': 8}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-ca145168-efa9-414c-9dd1-21d10766fdd3-0')
print(ai_msg.content)

J'adore programmer.

Chaining

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | chat
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API Reference:ChatPromptTemplate
AIMessage(content='Ich liebe Programmierung.', response_metadata={'token_usage': {'prompt_tokens': 38, 'total_tokens': 48, 'completion_tokens': 10}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-5dd936b0-b97e-490e-9869-2ad3dd524234-0')

Asynchronous calls

from langchain_community.chat_models import ChatOCIModelDeployment

system = "You are a helpful translator that translates {input_language} to {output_language}."
human = "{text}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])

chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict"
)
chain = prompt | chat

await chain.ainvoke(
{
"input_language": "English",
"output_language": "Chinese",
"text": "I love programming",
}
)
AIMessage(content='我喜欢编程', response_metadata={'token_usage': {'prompt_tokens': 37, 'total_tokens': 50, 'completion_tokens': 13}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-a2dc9393-f269-41a4-b908-b1d8a92cf827-0')

Streaming calls

import os
import sys

from langchain_community.chat_models import ChatOCIModelDeployment
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[("human", "List out the 5 states in the United State.")]
)

chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict"
)

chain = prompt | chat

for chunk in chain.stream({}):
sys.stdout.write(chunk.content)
sys.stdout.flush()


1. California
2. Texas
3. Florida
4. New York
5. Illinois

Structured output

from langchain_community.chat_models import ChatOCIModelDeployment
from pydantic import BaseModel


class Joke(BaseModel):
"""A setup to a joke and the punchline."""

setup: str
punchline: str


chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
)
structured_llm = chat.with_structured_output(Joke, method="json_mode")
output = structured_llm.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)

output.dict()
{'setup': 'Why did the cat get stuck in the tree?',
'punchline': 'Because it was chasing its tail!'}

API reference

For comprehensive details on all features and configurations, please refer to the API reference documentation for each class:


Was this page helpful?