JSONLoader
This notebook provides a quick overview for getting started with JSON document loader. For detailed documentation of all JSONLoader features and configurations head to the API reference.
- TODO: Add any other relevant links, like information about underlying API, etc.
Overview
Integration details
Class | Package | Local | Serializable | JS support |
---|---|---|---|---|
JSONLoader | langchain_community | ✅ | ❌ | ✅ |
Loader features
Source | Document Lazy Loading | Native Async Support |
---|---|---|
JSONLoader | ✅ | ❌ |
Setup
To access JSON document loader you'll need to install the langchain-community
integration package as well as the jq
python package.
Credentials
No credentials are required to use the JSONLoader
class.
If you want to get automated best in-class tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
Install langchain_community and jq:
%pip install -qU langchain_community jq
Initialization
Now we can instantiate our model object and load documents:
- TODO: Update model instantiation with relevant params.
from langchain_community.document_loaders import JSONLoader
loader = JSONLoader(
file_path="./example_data/facebook_chat.json",
jq_schema=".messages[].content",
text_content=False,
)
Load
docs = loader.load()
docs[0]
Document(metadata={'source': '/Users/isaachershenson/Documents/langchain/docs/docs/integrations/document_loaders/example_data/facebook_chat.json', 'seq_num': 1}, page_content='Bye!')
print(docs[0].metadata)
{'source': '/Users/isaachershenson/Documents/langchain/docs/docs/integrations/document_loaders/example_data/facebook_chat.json', 'seq_num': 1}
Lazy Load
pages = []
for doc in loader.lazy_load():
pages.append(doc)
if len(pages) >= 10:
# do some paged operation, e.g.
# index.upsert(pages)
pages = []
Read from JSON Lines file
If you want to load documents from a JSON Lines file, you pass json_lines=True
and specify jq_schema
to extract page_content
from a single JSON object.
loader = JSONLoader(
file_path="./example_data/facebook_chat_messages.jsonl",
jq_schema=".content",
text_content=False,
json_lines=True,
)
docs = loader.load()
print(docs[0])
page_content='Bye!' metadata={'source': '/Users/isaachershenson/Documents/langchain/docs/docs/integrations/document_loaders/example_data/facebook_chat_messages.jsonl', 'seq_num': 1}
Read specific content keys
Another option is to set jq_schema='.'
and provide a content_key
in order to only load specific content:
loader = JSONLoader(
file_path="./example_data/facebook_chat_messages.jsonl",
jq_schema=".",
content_key="sender_name",
json_lines=True,
)
docs = loader.load()
print(docs[0])
page_content='User 2' metadata={'source': '/Users/isaachershenson/Documents/langchain/docs/docs/integrations/document_loaders/example_data/facebook_chat_messages.jsonl', 'seq_num': 1}
JSON file with jq schema content_key
To load documents from a JSON file using the content_key
within the jq schema, set is_content_key_jq_parsable=True
. Ensure that content_key
is compatible and can be parsed using the jq schema.
loader = JSONLoader(
file_path="./example_data/facebook_chat.json",
jq_schema=".messages[]",
content_key=".content",
is_content_key_jq_parsable=True,
)
docs = loader.load()
print(docs[0])
page_content='Bye!' metadata={'source': '/Users/isaachershenson/Documents/langchain/docs/docs/integrations/document_loaders/example_data/facebook_chat.json', 'seq_num': 1}
Extracting metadata
Generally, we want to include metadata available in the JSON file into the documents that we create from the content.
The following demonstrates how metadata can be extracted using the JSONLoader
.
There are some key changes to be noted. In the previous example where we didn't collect the metadata, we managed to directly specify in the schema where the value for the page_content
can be extracted from.
In this example, we have to tell the loader to iterate over the records in the messages
field. The jq_schema then has to be .messages[]
This allows us to pass the records (dict) into the metadata_func
that has to be implemented. The metadata_func
is responsible for identifying which pieces of information in the record should be included in the metadata stored in the final Document
object.
Additionally, we now have to explicitly specify in the loader, via the content_key
argument, the key from the record where the value for the page_content
needs to be extracted from.
# Define the metadata extraction function.
def metadata_func(record: dict, metadata: dict) -> dict:
metadata["sender_name"] = record.get("sender_name")
metadata["timestamp_ms"] = record.get("timestamp_ms")
return metadata
loader = JSONLoader(
file_path="./example_data/facebook_chat.json",
jq_schema=".messages[]",
content_key="content",
metadata_func=metadata_func,
)
docs = loader.load()
print(docs[0].metadata)
{'source': '/Users/isaachershenson/Documents/langchain/docs/docs/integrations/document_loaders/example_data/facebook_chat.json', 'seq_num': 1, 'sender_name': 'User 2', 'timestamp_ms': 1675597571851}
API reference
For detailed documentation of all JSONLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html
Related
- Document loader conceptual guide
- Document loader how-to guides