Neo4j
Neo4j is a graph database management system developed by
Neo4j, Inc
.
The data elements
Neo4j
stores are nodes, edges connecting them, and attributes of nodes and edges. Described by its developers as an ACID-compliant transactional database with native graph storage and processing,Neo4j
is available in a non-open-source "community edition" licensed with a modification of the GNU General Public License, with online backup and high availability extensions licensed under a closed-source commercial license. Neo also licensesNeo4j
with these extensions under closed-source commercial terms.
This notebook shows how to use LLMs to provide a natural language interface to a graph database you can query with the
Cypher
query language.
Cypher is a declarative graph query language that allows for expressive and efficient data querying in a property graph.
Setting upโ
You will need to have a running Neo4j
instance. One option is to create a free Neo4j database instance in their Aura cloud service. You can also run the database locally using the Neo4j Desktop application, or running a docker container.
You can run a local docker container by running the executing the following script:
docker run \
--name neo4j \
-p 7474:7474 -p 7687:7687 \
-d \
-e NEO4J_AUTH=neo4j/password \
-e NEO4J_PLUGINS=\[\"apoc\"\] \
neo4j:latest
If you are using the docker container, you need to wait a couple of second for the database to start.
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_openai import ChatOpenAI
graph = Neo4jGraph(url="bolt://localhost:7687", username="neo4j", password="password")
Seeding the databaseโ
Assuming your database is empty, you can populate it using Cypher query language. The following Cypher statement is idempotent, which means the database information will be the same if you run it one or multiple times.
graph.query(
"""
MERGE (m:Movie {name:"Top Gun", runtime: 120})
WITH m
UNWIND ["Tom Cruise", "Val Kilmer", "Anthony Edwards", "Meg Ryan"] AS actor
MERGE (a:Actor {name:actor})
MERGE (a)-[:ACTED_IN]->(m)
"""
)
[]
Refresh graph schema informationโ
If the schema of database changes, you can refresh the schema information needed to generate Cypher statements.
graph.refresh_schema()
print(graph.schema)
Node properties:
Movie {runtime: INTEGER, name: STRING}
Actor {name: STRING}
Relationship properties:
The relationships:
(:Actor)-[:ACTED_IN]->(:Movie)
Enhanced schema informationโ
Choosing the enhanced schema version enables the system to automatically scan for example values within the databases and calculate some distribution metrics. For example, if a node property has less than 10 distinct values, we return all possible values in the schema. Otherwise, return only a single example value per node and relationship property.
enhanced_graph = Neo4jGraph(
url="bolt://localhost:7687",
username="neo4j",
password="password",
enhanced_schema=True,
)
print(enhanced_graph.schema)
Node properties:
- **Movie**
- `runtime`: INTEGER Min: 120, Max: 120
- `name`: STRING Available options: ['Top Gun']
- **Actor**
- `name`: STRING Available options: ['Tom Cruise', 'Val Kilmer', 'Anthony Edwards', 'Meg Ryan']
Relationship properties:
The relationships:
(:Actor)-[:ACTED_IN]->(:Movie)
Querying the graphโ
We can now use the graph cypher QA chain to ask question of the graph
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}][0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': 'Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.'}
Limit the number of resultsโ
You can limit the number of results from the Cypher QA Chain using the top_k
parameter.
The default is 10.
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True, top_k=2
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}][0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': 'Tom Cruise, Val Kilmer played in Top Gun.'}
Return intermediate resultsโ
You can return intermediate steps from the Cypher QA Chain using the return_intermediate_steps
parameter
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True, return_intermediate_steps=True
)
result = chain.invoke({"query": "Who played in Top Gun?"})
print(f"Intermediate steps: {result['intermediate_steps']}")
print(f"Final answer: {result['result']}")
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}][0m
[1m> Finished chain.[0m
Intermediate steps: [{'query': "MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)\nWHERE m.name = 'Top Gun'\nRETURN a.name"}, {'context': [{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]}]
Final answer: Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.
Return direct resultsโ
You can return direct results from the Cypher QA Chain using the return_direct
parameter
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True, return_direct=True
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': [{'a.name': 'Tom Cruise'},
{'a.name': 'Val Kilmer'},
{'a.name': 'Anthony Edwards'},
{'a.name': 'Meg Ryan'}]}
Add examples in the Cypher generation promptโ
You can define the Cypher statement you want the LLM to generate for particular questions
from langchain_core.prompts.prompt import PromptTemplate
CYPHER_GENERATION_TEMPLATE = """Task:Generate Cypher statement to query a graph database.
Instructions:
Use only the provided relationship types and properties in the schema.
Do not use any other relationship types or properties that are not provided.
Schema:
{schema}
Note: Do not include any explanations or apologies in your responses.
Do not respond to any questions that might ask anything else than for you to construct a Cypher statement.
Do not include any text except the generated Cypher statement.
Examples: Here are a few examples of generated Cypher statements for particular questions:
# How many people played in Top Gun?
MATCH (m:Movie {{name:"Top Gun"}})<-[:ACTED_IN]-()
RETURN count(*) AS numberOfActors
The question is:
{question}"""
CYPHER_GENERATION_PROMPT = PromptTemplate(
input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE
)
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0),
graph=graph,
verbose=True,
cypher_prompt=CYPHER_GENERATION_PROMPT,
)
chain.invoke({"query": "How many people played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (m:Movie {name:"Top Gun"})<-[:ACTED_IN]-()
RETURN count(*) AS numberOfActors[0m
Full Context:
[32;1m[1;3m[{'numberOfActors': 4}][0m
[1m> Finished chain.[0m
{'query': 'How many people played in Top Gun?',
'result': 'There were 4 actors in Top Gun.'}
Use separate LLMs for Cypher and answer generationโ
You can use the cypher_llm
and qa_llm
parameters to define different llms
chain = GraphCypherQAChain.from_llm(
graph=graph,
cypher_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
qa_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k"),
verbose=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}][0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': 'Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.'}
Ignore specified node and relationship typesโ
You can use include_types
or exclude_types
to ignore parts of the graph schema when generating Cypher statements.
chain = GraphCypherQAChain.from_llm(
graph=graph,
cypher_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
qa_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k"),
verbose=True,
exclude_types=["Movie"],
)
# Inspect graph schema
print(chain.graph_schema)
Node properties are the following:
Actor {name: STRING}
Relationship properties are the following:
The relationships are the following:
Validate generated Cypher statementsโ
You can use the validate_cypher
parameter to validate and correct relationship directions in generated Cypher statements
chain = GraphCypherQAChain.from_llm(
llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
graph=graph,
verbose=True,
validate_cypher=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}][0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': 'Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.'}
Provide context from database results as tool/function outputโ
You can use the use_function_response
parameter to pass context from database results to an LLM as a tool/function output. This method improves the response accuracy and relevance of an answer as the LLM follows the provided context more closely.
You will need to use an LLM with native function calling support to use this feature.
chain = GraphCypherQAChain.from_llm(
llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
graph=graph,
verbose=True,
use_function_response=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}][0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': 'The main actors in Top Gun are Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan.'}
You can provide custom system message when using the function response feature by providing function_response_system
to instruct the model on how to generate answers.
Note that qa_prompt
will have no effect when using use_function_response
chain = GraphCypherQAChain.from_llm(
llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
graph=graph,
verbose=True,
use_function_response=True,
function_response_system="Respond as a pirate!",
)
chain.invoke({"query": "Who played in Top Gun?"})
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name[0m
Full Context:
[32;1m[1;3m[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}][0m
[1m> Finished chain.[0m
{'query': 'Who played in Top Gun?',
'result': "Arrr matey! In the film Top Gun, ye be seein' Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan sailin' the high seas of the sky! Aye, they be a fine crew of actors, they be!"}