DeepSparse
This page covers how to use the DeepSparse inference runtime within LangChain. It is broken into two parts: installation and setup, and then examples of DeepSparse usage.
Installation and Setup
- Install the Python package with
pip install deepsparse
- Choose a SparseZoo model or export a support model to ONNX using Optimum
There exists a DeepSparse LLM wrapper, that provides a unified interface for all models:
from langchain_community.llms import DeepSparse
llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none"
)
print(llm.invoke("def fib():"))
API Reference:DeepSparse
Additional parameters can be passed using the config
parameter:
config = {"max_generated_tokens": 256}
llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none",
config=config,
)
Related
- LLM conceptual guide
- LLM how-to guides