Dria
Dria is a hub of public RAG models for developers to both contribute and utilize a shared embedding lake. This notebook demonstrates how to use the
Dria API
for data retrieval tasks.
Installation
Ensure you have the dria
package installed. You can install it using pip:
%pip install --upgrade --quiet dria
Configure API Key
Set up your Dria API key for access.
import os
os.environ["DRIA_API_KEY"] = "DRIA_API_KEY"
Initialize Dria Retriever
Create an instance of DriaRetriever
.
from langchain_community.retrievers import DriaRetriever
api_key = os.getenv("DRIA_API_KEY")
retriever = DriaRetriever(api_key=api_key)
API Reference:DriaRetriever
Create Knowledge Base
Create a knowledge on Dria's Knowledge Hub
contract_id = retriever.create_knowledge_base(
name="France's AI Development",
embedding=DriaRetriever.models.jina_embeddings_v2_base_en.value,
category="Artificial Intelligence",
description="Explore the growth and contributions of France in the field of Artificial Intelligence.",
)
Add Data
Load data into your Dria knowledge base.
texts = [
"The first text to add to Dria.",
"Another piece of information to store.",
"More data to include in the Dria knowledge base.",
]
ids = retriever.add_texts(texts)
print("Data added with IDs:", ids)
Retrieve Data
Use the retriever to find relevant documents given a query.
query = "Find information about Dria."
result = retriever.invoke(query)
for doc in result:
print(doc)
Related
- Retriever conceptual guide
- Retriever how-to guides