Gradient
Gradient
allows to create Embeddings
as well fine tune and get completions on LLMs with a simple web API.
This notebook goes over how to use Langchain with Embeddings of Gradient.
Importsโ
from langchain_community.embeddings import GradientEmbeddings
API Reference:GradientEmbeddings
Set the Environment API Keyโ
Make sure to get your API key from Gradient AI. You are given $10 in free credits to test and fine-tune different models.
import os
from getpass import getpass
if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
# Access token under https://auth.gradient.ai/select-workspace
os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
# `ID` listed in `$ gradient workspace list`
# also displayed after login at at https://auth.gradient.ai/select-workspace
os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")
Optional: Validate your environment variables GRADIENT_ACCESS_TOKEN
and GRADIENT_WORKSPACE_ID
to get currently deployed models. Using the gradientai
Python package.
%pip install --upgrade --quiet gradientai
Create the Gradient instanceโ
documents = [
"Pizza is a dish.",
"Paris is the capital of France",
"numpy is a lib for linear algebra",
]
query = "Where is Paris?"
embeddings = GradientEmbeddings(model="bge-large")
documents_embedded = embeddings.embed_documents(documents)
query_result = embeddings.embed_query(query)
# (demo) compute similarity
import numpy as np
scores = np.array(documents_embedded) @ np.array(query_result).T
dict(zip(documents, scores))
Relatedโ
- Embedding model conceptual guide
- Embedding model how-to guides