IPEX-LLM: Local BGE Embeddings on Intel CPU
IPEX-LLM is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency.
This example goes over how to use LangChain to conduct embedding tasks with ipex-llm
optimizations on Intel CPU. This would be helpful in applications such as RAG, document QA, etc.
Setupโ
%pip install -qU langchain langchain-community
Install IPEX-LLM for optimizations on Intel CPU, as well as sentence-transformers
.
%pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
%pip install sentence-transformers
Note
For Windows users,
--extra-index-url https://download.pytorch.org/whl/cpu
when installipex-llm
is not required.
Basic Usageโ
from langchain_community.embeddings import IpexLLMBgeEmbeddings
embedding_model = IpexLLMBgeEmbeddings(
model_name="BAAI/bge-large-en-v1.5",
model_kwargs={},
encode_kwargs={"normalize_embeddings": True},
)
API Reference:IpexLLMBgeEmbeddings
API Reference
sentence = "IPEX-LLM is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency."
query = "What is IPEX-LLM?"
text_embeddings = embedding_model.embed_documents([sentence, query])
print(f"text_embeddings[0][:10]: {text_embeddings[0][:10]}")
print(f"text_embeddings[1][:10]: {text_embeddings[1][:10]}")
query_embedding = embedding_model.embed_query(query)
print(f"query_embedding[:10]: {query_embedding[:10]}")
Relatedโ
- Embedding model conceptual guide
- Embedding model how-to guides