LocalAI
Let's load the LocalAI Embedding class. In order to use the LocalAI Embedding class, you need to have the LocalAI service hosted somewhere and configure the embedding models. See the documentation at https://localai.io/basics/getting_started/index.html and https://localai.io/features/embeddings/index.html.
from langchain_community.embeddings import LocalAIEmbeddings
API Reference:LocalAIEmbeddings
embeddings = LocalAIEmbeddings(
openai_api_base="http://localhost:8080", model="embedding-model-name"
)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
Let's load the LocalAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see here
from langchain_community.embeddings import LocalAIEmbeddings
API Reference:LocalAIEmbeddings
embeddings = LocalAIEmbeddings(
openai_api_base="http://localhost:8080", model="embedding-model-name"
)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
import os
# if you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through
os.environ["OPENAI_PROXY"] = "http://proxy.yourcompany.com:8080"
Related
- Embedding model conceptual guide
- Embedding model how-to guides